Hands-on Quantum Physics

Quantum Levitation has dazzled millions of people via major TV networks, the TED conference live and online, and in universities and schools around the world. But we haven’t just created a sophisticated demo for audiences to view; we developed our kits to be simple-to-use and highly engaging educational tools.  

You Can Experiment with Quantum Levitation

It’s time to take quantum phenomena into your own hands! We designed our mini-maglev kit for whole classrooms to be able to explore circular motion. Your students can operate the kit themselves, conducting meaningful experiments like:

  1. Circular motion – polar vs. cartesian coordinates
  2. Circular motion – constant velocity
  3. Harmonic motion I 
  4. Harmonic motion II – tuneable harmonic oscillator 
  5. Conservation of mechanical energy
  6. Linear momentum conservation I
  7. Linear momentum conservation II – plastic collisions

Each involves three straightforward steps:

1. Perform the experiment

Position the maglev track (horizontal / tilted), then lock the levitator/s on the track and prepare your smartphone camera. Record several videos of the experiment using different parameters.  

2. Extract the data

Export your videos to Tracker software. Examine the recorded motion of the levitators with your students, and have them identify the relevant parameter involved (coordinates, velocity, angle, etc). 

3. Analyze the data

Use Tracker, Excel, or a similar software to analyze the data you’ve collected. You can perform linear fitting, calculate energies, etc. Discuss the results with your students and enjoy a lively Q&A session about the experiment!  

RELATED POSTS

Can we store energy using Superconductors? Yes. There are two superconducting properties that can be used to store energy: zero electrical resistance (no energy loss!) and Quantum levitation (friction-less motion).  Magnetic Energy Storage (SMES) Storing energy by driving currents inside...

latest posts